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The redox processes of organometallics are important in
synthetic transformations, especially in transition-metal-induced
reactions.1 Transmetalation and electronic interaction are able
to participate in the control of such a process.2 From this point
of view, main-group organometallics such as silicon, aluminum,
and boron have limited usage due to their restricted redox
processes. A versatile one-electron oxidation method for orga-
nosilicon compounds has been developed by using oxovanadium-
(V) compounds in a previous paper,3,4 permitting oxidative
desilylation via radical cations and radicals. Oxidative transfor-
mations of organoaluminum compounds usually lead to alcohols,5

but to the best of our knowledge, the investigation on selective
carbon-carbon bond formation of organic substituents on alu-
minum has not been undertaken with the aid of metallic oxidants.
This is partly due to the difficulty in the selection of metallic
oxidants. Herein we report a highly selective coupling of
organoaluminum compounds induced by oxovanadium(V) com-
pounds.
The addition of 1-alkynyllithium (1.1 equiv) to the 1-octenyl-

aluminum6 at-78 °C, followed by treatment with VO(OEt)Cl2,
led to a novel cross-coupling of organic substituents on aluminum,
giving the correspondingtrans-enyne2 with excellent stereose-
lectivity (Scheme 1). Interestingly, the homo-coupled diene and
isobutylated products were not obtained at all, although the diyne
probably from excess alkynyllithium was formed as a byproduct.7

Representative results of the cross-coupling reaction are shown
in Table 1. The addition of the ate complex to the solution of
VO(OEt)Cl2 raised the yield of2 (Table 1, entries 1 and 2).
Similar conditions can be employed with some other 1-alkynyl-
lithiums, affording the conjugatetrans-enynes2 in good yields

via highly selective carbon-carbon bond formation (Table 1,
entries 3-5). Stoichiometric or excess amounts of VO(OEt)Cl2

are required for this transformation, and the absence of VO(OEt)-
Cl2 only resulted in the recovery of 1-octene and the starting
alkyne.
When the aryl-substituted aluminum38 was used instead of

the 1-alkenylaluminum, the intramolecular coupling of the ate
complex 4 took place selectively between aryl and 1-alkynyl
groups (Scheme 2). Use of VO(OPri)2Cl with the lower oxidation
capability9 gave rise to the coupling product5 and only trace
amount of isobutylated product despite the higher reaction
temperature (0°C). Again, the alkynyl group is introduced to
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Scheme 1

Table 1. The Cross-Coupling Reaction of the Ate Complex1a

entry 1, R 2, yield, %b

1 Ph 80 (76)
2 Ph 56c

3 n-C6H13 84 (70)
4 Me3Si 77 (68)
5 PhCH2OCH2 72 (65)

aVO(OEt)Cl2, 3 equiv. The reaction conditions are shown in Scheme
1. The ate complex1 was added to the solution of VO(OEt)Cl2 unless
otherwise stated.bDetermined by1H NMR based on 1-octyne. Isolated
yields are shown in parentheses.cVO(OEt)Cl2 was added to the solution
of the ate complex1.

Scheme 2

Scheme 3
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the sp2-carbon (o-anisyl group) of aluminum ligand rather than
the sp3-carbon (isobutyl group). On the other hand, the selectivity
of reaction with VO(OEt)Cl2 was lower and the alkylation product
and biaryl were formed as byproducts.
Although tri(organo)aluminum compounds are considered to

be less reactive than the corresponding ate complexes, the reaction

of aryldiethylaluminums6 (obtained from aryllithiums and
diethylaluminum chloride) with VO(OEt)Cl2 in ether at the room
or refluxing temperature surprisingly led to a novel ethylation
reaction (Scheme 3). The absence of VO(OEt)Cl2 again resulted
in the recovery of the arene. As exemplified in Table 2, the
procedure can be applied to a wide variety of arylaluminums
bearing an electron-donating group, indicating that intramolecular
coupling of the organic groups of organoaluminums is performed
selectively. The methylthio group was found to be intact under
the conditions, but the similar coupling was not observed in the
case of the 2-cyanophenyl derivative. The electronic nature of
the substituents in6 appears to be an important factor to control
the reaction.10 The carbon-carbon bond formation occurred even
with the disubstituted phenyllithium (Table 2, entries 9-10). The
naphthyllithium was also converted to the ethylated product (Table
2, entry 11).
It should be noted that the coupling reaction depends on the

substituent of oxovanadium(V) compounds. Use of VO(OPri)2-
Cl decreased the yield of the ethylation product (Table 2, entry
2). Staring from diisobuthylaluminum derivative, the yield of
the expected coupling product drastically decreased with the major
formation of the biaryl (Table 2, entry 3). This result is probably
due to the steric effect, but an improved conversion to the desired
coupling product was attained by using VO(OPri)2Cl instead of
VO(OEt)Cl2 (Table 2, entry 4). Both redox and steric control
interactions are considered to operate in these transformations.
Although the intramolecular coupling mechanism is ambiguous,

coordination of oxo atom of oxovanadium(V) to organoaluminums
has been reported.11 Such an intermetallic interaction and/or
transmetalation may induce the oxidation of organoaluminum
compounds.11,12 In conclusion, these novel transformations for
the formal reductive elimination on aluminum are for the first
time achieved by oxidation of the organoaluminum ate complexes
and arylaluminums with the oxovanadium(V) compound.13 This
method is expected to be promising with regard to its synthetic
potential.
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Table 2. The Cross-Coupling Reaction of the Arylaluminum6a

a VO(OEt)Cl2, 3 equiv. The arylaluminum6was added to the ether
solution of VO(OEt)Cl2. Reaction time, 2 h.b The biaryl product was
obtained in<5% yield unless otherwise stated.c VO(O-i-Pr)2Cl was
used instead of VO(OEt)Cl2. d The biaryl product, 13%.e i-Bu2AlCl
was used instead of Et2AlCl. f The biaryl product, 54%.g The biaryl
product, 22%.h The biaryl product, 26%.
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